宁波众信轴承科技有限公司
·导轨滚轮轴承
·A…/AT…导向校直轮,矫直轮,过线轮轴承
·W VW… 带W形槽双V导轨滚轮轴承
·LV…120度"V"型槽的导轨导向滚轮轴承
·SG系列-“哥特式”绣花机导轨滚轮轴承
·ZLV...系列带螺栓轴导轨滚轮轴承
·LFR…带"哥特式"U形圆弧槽导轨滚轮轴承
·LR系列-带“R500”圆弧的导轨滚轮轴承
·NUTR,NA22系列...螺栓型滚轮滚针轴承
·NATR,NATV系列...螺栓型滚轮滚针轴承
·YLX系列-哑铃型吊钩轴承滚轮轴承
·FR/LR系列...“V”型导轨滚轮轴承
·RE系侧轴颈轴承、单斜边导轨滚轮轴承
·FR.FRREI系列...80度V型槽滚轮轴承
·不锈钢轴承
·不锈钢微型英制轴承
·不锈钢法兰球轴承
·不锈钢双列角接触球轴承
·不锈钢加宽加厚轴承
·不锈钢深沟球轴承
·异形特种滚轮轴承
·C44梯形菱形飞碟滚轮轴承
·LV20/10ZZ带螺纹杆滚轮轴承
·LV202-41ZZ带轴带杆导轨滚轮轴承
·LV202-39ZZ带M12螺纹轴导轨滚轮轴承
·LV202-38ZZ高品质带螺纹轴滚轮轴承
·LV202-40ZZ带螺杆滚轮轴承
·FR20Z,FR20超强承载导轨滚轮轴承
·C30.5菱形导轨滚轮轴承
·FR35Z进口机械机床滚轮轴承
·C44飞碟菱形滚轮轴承
·【非标轴承】校直轮(矫直轮)轴承、导向导线轮轴承、带槽导轨滚轮轴承
·【LFR5201-20KDD】林业机械导轨滚轮轴承
·V25.2RS V3-70带螺纹螺栓导轨滚轮轴承 M8×25×14
·U24/8.2RS带U槽导轨滚轮轴承 8×24×12/14.5
·A1001ZZ V3.4-90校直轮轴承 8×30×10
·V624ZZ V3-135矫直轮校直轮轴承 4×13×5
·608/11.2RS加厚微型轴承 8×22×11
·U624ZZ R1.5校直轮钢丝铜丝轴承 4×13×4
·V694/14.5.2RS V2-120加厚带V槽导轨滚轮轴承 4×14.5×10/10.4
·U62010.2RS R3切割机导轨滚轮轴承 6×20×10/12
·V625V3-135弹簧机校直轮轴承
·V624/6ZZ V4-90调直(校直轮)轴承 4×13×6
·SL1608.2RS V2-120校直轮拉丝轴承 5×16×8/9
·V683ZZ V0.6-100微型校直轮导线轴承 3×7×3
·V608ZZ V1.27-90校直导线轮轴承 8×22×7
·V625ZZ V1.5-90钢丝铜丝校直轮轴承
·V623/13ZZ V3-90校直轮轴承 4×13×4
·U635ZZ R2.8-1导轨拉线校直轴承 5×19×6
·R6/15ZZ单面凸出英制微型轴承
·【CR45BC/BE】同/偏心螺栓滚轮轴承
·V626ZZ V1.0-90弹簧机校直轴承 6×19×6
·U625ZZ-R1.3×0.6 导线轮校直轴承
·【608/W14】双列加厚球轴承 8*22*14
·U608ZZ R2.0-3校直轮拉丝轴承 8×22×7
·MBHJ13CNS带螺栓滚轮轴承 M4×12.8×8/16
·V1045/16.2RS V8-120导轨滚轮轴承
·【FK1000】渡铬纺线机轴承
·【U35/5】U槽纺织机械滚轮轴承
·【V20M5】内螺纹移动设备滚轮轴承
·V22/37.2RS带螺栓型导轨滚轮轴承
·T626ZZ 带T形槽校直轮轴承 6×19×6
·【V16.5】V型导轨滚轮轴承5*16.5*9*11
·【CR25】不锈钢滑轮轴承 4.98*25*6
·LV202-39ZZ导轨滚轮轴承 15×39×18
·U624/7ZZ 加厚双列滚轮拉丝轴承 4*13*7
·V625ZZ V1.4-90导线过线轮轴承 5×16×5
·U684/14ZZ V2-120哑铃形轨道滚轮轴承 4*12*14
·V103114ZZ V3.2-90导轨滚轮轴承 10×31×14
·【825/1415】双列滚轮轴承
·【K3】加厚过线滚轮轴承 3*16*4
·【SL1616V1-90】精密拉丝校直轴承 5*16*17
·【U22】导轨滚轮轴承8*22.4*13.5*14.5
·LFR5201-10ZZ/39 导轨滚轮轴承
·【U16/4.763】纺织机械纺线轮轴承 4.763*16*4*5
·【SG25】内螺纹激光绣花机滚轮轴承
·U625ZZ R1.3-0.6 导线校直轮轴承 5×16×5
·619/15.4带滚花非标轴承 6×19×8×15.4
·T22导轨滚轮轴承8×22.4×13.5×14.5
·【LFR50/5ZZ-T】自动化设备滚轮轴承
·【C28】单列斜角直线导轨轴承
·【SL1116V0.6-90】拉丝校直轮轴承 3*10*17
·加厚U624ZZ R3导向校直轮轴承 4×13×7
·6203/43-2RS带销钉汽油发电机轴承
·605/16.2RS内圈凸出标轴承 5×14×5×16
·RLN30 PCN30导轨滚轮轴承
·SL401516ZZV5-90°双列导轨滚轮轴承15×40×16
·【SG66】导轨滑块滚轮轴承 6*22*10
·【SLV2413/8】不锈钢V槽导轨滚轮轴承 8*24*11*13
 


技术资料 
您当前的位置:首页 >> 技术资料  

电镀工艺简介和轴承膨胀间隙过小的方法
 

用正交试验法考察了滑动轴承(又称轴瓦)减摩层电镀液中有关成份的含量及工艺参数对镀层性能的影响,使该电镀工艺得到了进一步优化,显著提高了镀层质量,满足了主机厂新机型对滑动轴承质量的要求。 
    1、在内燃机中使用的滑动轴承(又称轴瓦)是易损的关键零件。机械加工完毕后,一般在其内表面的基体上先电镀1~3μm厚的镍(Ni)栅阻挡层[1~2],继之电镀15~30μm厚的铅锡铜(PbSnCu)三元合金减摩层[3~24],最后在全部表面上电镀1~2μm厚的锡(Sn)或铅锡(PbSn)合金防护层[2]。 
    在轴瓦的内表面提供减摩层的目的是为了提高轴瓦的减摩性、耐磨性、耐蚀性、镶嵌性、顺应性、磨合性、抗咬合性、抗疲劳强度、抗压强度、承载能力等,从而提高其工作性能,延长使用寿命,最终保证主机的高性能运行。 
    一般根据使用要求选择镀层种类。小型发动机的轴瓦一般使用PbSn6~20二元合金[12~13、16~17、22],也有使用铅铜(PbCu)、铅银(PbAg)二元合金的。随着时间的推移和科学技术的发展,对于大、中型柴油机、内燃机上使用的轴瓦,要求具有负载能力大、使用寿命长,且应具有良好的润滑性、耐蚀性、耐磨性等性能。实践证明,在传统的铅锡(PbSn6~20)二元合金减磨镀层中加入少量的第三组分元素铜(Cu)就可以显著改善镀层性能[3、10、20]。当铅锡(PbSn6~20)二元合金镀层中加入2~3%的铜时,一方面由于铜与锡具有一定的亲合势,在一定程度上抑制了锡向衬里(即基体)扩散,有利于保证镀层中锡含量及其金相结构的稳定;另一方面,由于加入了铜后,镀层的硬度从原来HV8~10提高到HV13~15,大大改善了镀层的耐磨性和抗疲劳强度等,从而显著提高了轴瓦的负载能力,使用寿命大幅度延长。 
    若在衬里金属上直接电镀减摩镀层,则镀层中的锡容易向衬里扩散,使得轴瓦在工作一段时间后,镀层内的锡含量下降到小于6%(质量)。并且无论是铜基合金衬里还是铝基合金衬里,其中都含有一定量的铜,扩散到衬里中的锡能与铜生成脆性大的金属间化合物(Cu3Sn)。这样不仅使镀层的机械性能下降,而且破坏了衬里的结构,至使轴瓦的整体机械性能降低。解决该问题的方法是在衬里材料与减摩底层之间电镀一层镍或镍基合金阻挡层(又称栅层或阻挡层),以抑制锡向衬里扩散[1~2]。 
    锡或铅锡合金防护层除了具有一定的防腐蚀作用外,在轴瓦工作期间还可以扩散的方式补充减摩层中的锡的含量,使其各成分的含量处于相对稳定的状态。另外,由于这层防护层不含铜,相对较软,因此轴瓦在工作的初期就能达到良好的磨合要求。 
    2 发展历程 
    减摩镀层在国外的研究起步较早。1920年由格罗奥夫(J.Grooff)提出了电镀铅锡合金的第一个专利,并用于海军鱼雷储气瓶的内表面电镀,到二十世纪四十年代开始用于轴瓦的电镀。1952年舒尔茨(Schults)提出了在铝及铝硅(AlSi)合金基体上电镀铅锡铜三元合金的专利。1953年舍夫(Schoefe)曾发表轴瓦使用铅锡铜合金的综述。1976年,Jong—Sang Kim,Su—ιι Pyun and Hyo—Geun Lee发表了“铅锡铜电镀层的晶面取向及微观形貌”的论文[7]。1980年毕比(Beebe)提出含铜2~3%(质量)、锡9~12%(质量),其余为铜的三元合金电镀生产工艺流程,镀层厚度为15μm。1982年沃特曼(Waterman)等人就三元合金电镀液中铜离子(Cu2+)的置换问题提出了解决的办法。 
    国内对于减摩合金镀层的研究和应用起步较晚。1960年初,武汉材料保护研究所与海陵第一配件厂首先研制并用于生产的电刷镀铅锡合金工艺已用于快艇发动机的电镀。二十世纪七十年代中期,上海合金轴瓦厂及上海沪东造船厂对轴瓦电镀铜锡合金工艺者了较详细的研究[12~13]。1985年,哈尔滨工业大学电化学教研室与中国船舶工业总公司四六六厂共同研究了铅青铜滑动轴承上电镀铅锡铜三元合金减摩层的工艺,并已用于生产。1989年,Dusanka Radoric发表了“在氟硼酸盐镀液中以氢醌(对一苯二酚)为添加剂的铅锡合金电镀”的论文16。十十世纪末,南通轴瓦厂的范家华、姜志东21、24,武汉材料保护研究所的曾良宇、杨先桂、王会文8、17,广西桂林内燃机配件厂的秦胜毅9,戚墅堰机车车辆工艺研究所薛伯生20等对减摩层的电镀工艺从不同的方面先后进行过不同程度的研究,为该工艺在生产应用中的进一步完善奠定了一定的基础。 
    3 问题的提出 
    我厂的铅锡铜三元合金减摩镀层的电镀工艺属国内首创,多年来为我国主机配件市场提供了大量轴瓦。近年来,我厂轴瓦产品定货量逐年上升,并且有些轴瓦产品已打入国际市场,具有一定量的出口。这充分体现了我厂的轴瓦产品在激烈的市场竞争中具有相当强的实力。 
    自1989年到1991年期间,通过我们的艰苦努力、反复试验,已从根本上解决了轴瓦镀层起泡、脱皮等附着强度差的致命缺陷问题;消除了基体遭受批量性严重腐蚀的故障;克服了批量性壁厚超差,提高了工序能力;废品损失率一直很低,一次交检合格品率逐年提高。 
    然而,镀层粗糙、结瘤、花斑、凹坑、气流条纹等缺陷还时有发生,有时还出现阴极电流密度(DK)达不到工艺范围的现象。 
    减摩镀层的上述缺陷直接影响轴瓦产品质量。随着主机厂机型的不断更新换代、进口机型的国产化及市场竞争的日趋激烈,用户对轴瓦产品质量的要求越来越高。市场的竞争从根本上说就是产品质量的竞争。在用户对产品质量指标要求日益提高的形势下,我们面临着改进轴瓦电镀工艺、进一步提高轴瓦产品质量这一新课题的严峻挑战。
    4. 影响轴瓦减摩镀层质量的有关因素 
    4.1 铅锡铜三元合金减摩层电镀液的文献配方及工艺参数 
 
   文献[3~10、20、23~24]中发表的铅锡铜三元合金镀液中有关成分的含量及工艺参数归纳如下: 
    Pb2+(以Pb(BF4)2的形式加入):80~333g/ι; 
    Sn2+(以Sn(BF4)2的形式加入):5~33.3g/ι; 
    Cu2+(以Cu(BF4)2的形式加入):2~11g/ι; 
    HBF4(游离):40~300g/ι; 
    H3BO3(游离):15~40g/ι; 
    稳定剂:2~12g/ι; 
    添加剂:0.1~5g/ι; 
    阴极电流密度(DK):1~8A/dm2; 
    温度(T):15~30℃; 
    时间(t):15~35min; 
    镀层厚度(δ):15~30μm; 
    阳极的组成:PbSn8~11。 
    4.2 影响减摩镀层质量的有关因素 
    从上述配方中可以看到,无论是成分含量还是工艺参数,其范围都太宽;为适应生产要求,有必要进一步寻优,在进行寻优试验之前先对影响减摩镀层质量的有关因素进行必要的分析,以确定正交试验中各因子水平的可行域。 
    4.2.1 主盐离子浓度的影响 
    镀液中的主盐离子为Pb2+、Sn2+、Cu2+。其中的Sn2+、Cu2+的含量可根据合金镀层中Sn、Cu的重量百分含量进行相应的调整,可以满足用户对镀层成分含量的要求。因此对主盐离子而言,仅就镀液中的Pb2+含量对镀层质量的影响进行讨论。 
    镀液中的Pb2+为合金镀层提供主要组分,文献报道的含量范围为80~333g/ι。如果其浓度较高,则允许使用较高的阴极电流密度,沉积速度快;但分散能力降低,带出损失较大。如果其浓度较低,则分散能力较好,但沉积速度较慢。如果含量太低则镀液的浓差极化太大,电流升不上去,镀层易出现气流条纹缺陷和棱锥形的微观金相结构,直观上体现为镀层粗糙。如果含量过高则一方面使镀液带出损失增大,增加成本;另一方面在气温较低时易发生硼酸(H3BO3)及添加剂的析出现象,从而造成镀层粗糙。适宜的含量是DK升至工艺规定的上限,且镀层结晶细致;在气温降至15℃以下时,镀液中应无硼酸及添加剂的析出现象。 
    4.2.2 游离氟硼酸(HBF4)浓度的影响 
    其主要作用为促使阳极正常溶解;防止二价锡(Sn2+)的氧化和抑制主要离子(Pb2+、Sn2+、Cu2+)的水解,提高镀液的稳定性;提高导导性及分散能力;细化结晶。 
    文献报道的含量范围为40~300g/ι。 
    当游离氟硼酸的含量过低时,它离解出的氢离子(H+)浓度低,镀液中可能发生如下水解反应; 
    Pb2++2H2O小于==大于Pb(OH)2↓+2H+ 
    Sn2++2H2O小于==大于Sn(OH)2↓+2H+ 
    Cu2++2H2O小于==大于Cu(OH)2↓+2H+. 
    它们都生成氢氧化物沉淀而悬浮于镀液中。电镀时,它们粘附于基体表面或夹杂在镀层内,使得镀层与基体之间的结合力下降,且镀层发脆、粗糙、起花斑,从而镀层的耐磨性及抗疲劳强度等性能明显下降。 
    当镀液中的游离氟硼酸含量过高时,在镀件的高电流密度处,即轴瓦有毛刺的地方或锐边、端面等有氢气析出。其结果是在轴瓦镀层上面产生气流条纹和针孔缺陷。同时,因为边缘效应和尖端放电使得高电流密度处沉积太快,镀液中的主盐离子来不及补充,即由表面扩散或形核控制转变成液相传质控制,浓差极化增大得使轴瓦内表面(阴极)发生如下电化学副反应: 
    2H++2e小于==大于H2↑ 

    从上述反应可以看出,当氢离子(H+)浓度(即相应的游离氟硼酸的浓度)增高时,平衡向右边移动,促进氢气(H2)的生成。析氢的结果不仅会使镀层出现气流条纹和针孔等缺陷,而且还会由于初生态的氢(H——即氢自由基)向镀层内部渗透形成金属氢化物而产生晶格扭曲及螺纹错位现象。如果用扫描电镜(SEM)观察该镀层断面的微观形貌,可以发现其晶体呈大棱锥结构[7],直观上则是镀层粗糙。另一方面,形成的金属氢化物是不稳定物质,经烘烤加热检验时会分解而释放出氢气(H2)从而使镀层发生鼓泡现象


解决钢球磨主轴承膨胀间隙过小的新方法
芜湖发电厂13号炉系上海锅炉厂生产的超高压、单汽鼓、自然循环、储仓式煤粉炉,
型号为SG-42/13.7-M418型,配置2套沈阳重型机械厂生产的DTM320/580型钢球磨,
主轴承采用流体动力润滑。 
2001年1月,13号炉乙钢球磨检修,揭去后主轴承上盖,检查测量发现后主轴承膨胀
间隙C=7 mm,明显过小(正常此膨胀间隙应大于20 mm)。如不能解决该问题,会因磨
煤机机身自由膨胀受阻,使空心轴挡油环与轴承座产生摩擦,严重影响磨煤机的安全
运行。如按常规方法解决,须顶磨煤机大罐,将磨煤机后主轴承座后移,对轴承座找
平找正,这样的话需投入大量人力物力,且检修周期长,影响机组满负荷运行。 
但如能使主轴承座乙侧的内径D2大于空心轴挡油环外径D1,就能很好地避免因磨煤机
主轴承膨胀间隙过小造成的磨煤机膨胀受阻,使空心轴与主轴承座发生磨擦,从而严
重影响磨煤机安全运行的问题。 
于是我们首先制作架车刀的专用工具,将其固定于磨煤机后主轴承空心轴轴套部位,
进行简单找正,使其能随磨煤机转动。由于盘车转速低,只要将每次车削量控制在规
定的范围内,便可对后轴承座内口进行车削,一般情况下车削5~8 mm,即可达到内径
D2大于外径D1的目的,另考虑到车削后容易出现主轴承润滑油泄漏,又根据车削后的形
状制作了相应的盘根进行密封。 
经过上述处理后连续运行了3年多,磨煤机后主轴承一直运行稳定,且后主轴承座密封
完好,无渗油现象。 
 

 
  上一篇:热处理发展历程和轴承钢表面强化的方法
  下一篇:自润滑轴承的原理和轴承ABEC参数攻略
宁波众信轴承科技有限公司    版权所有
地址:宁波市镇海区骆驼街道镇骆西路    E-mail:UTSbearing@163.com
销售一部:0086-574-13738834484    销售二部:0086-574-18858003714    
电话:0574-87323629    传真:0574-87323629